Preparation and Screening of Aminoacridines for Induction of Lung Tumor Fluorescence in Rats

Norman B. Ackerman, ${ }^{1}$
Department of Surgery, University Hospital, Bosion University Medical Center, Boston Massachusells
David K. Haldorsen,
Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota

Frank H. Tendick, and Edward F. Elslager
Department of Chemistry, Research Laboratories, Parke, Davis and Co., Ann Arbor, Michigan
Received February 2, 1966
Revised Manuscript Received September 29, 1967

Abstract

Certain aminoacridines induce fluorescence and are selectively concentrated in lung tumors in rats. To enable a more precise determination of the chemical configuration associated with these properties, a group of 86 acridine compounds was evaluated. Twenty-five aminoacridines produced intense fluorescence inl hung tumors in rats following a single $1.5-20-\mathrm{mg}$ subcutaneous dose. All active compounds contained a $\mathrm{NH}-\mathrm{Y}-\mathrm{NR}_{1} \mathrm{R}_{2}$ group attached to a 9 -acridinyl, 9 -acridinyl 10 -oxide, benz $[b]$ acridin-12-yl, benz $[c]$ acridin- 7 - $y \mid$, or benzo $[b][1,8]$ phenan-throlin- 7 -yl nucleus. The application of such conpounds in fluorescent bronchoscopy or fluorescent exfoliative cytology are possibilities in lung cancer study. The potential use of radioisotope-tagged derivatives in scintillation scanning of organs such as the lung and liver also holds promise.

There has been a continuing search by many investigators for compounds that would localize to a greater extent in tumors than in surrounding normal tissues. If such a compound were made radioactive, it might be useful in the diagnosis and/or therapy of internal cancer.

Several years ago Ackerman and Shemesh ${ }^{2}$ observed that certain aminoacridine compounds such as quinacrine (I) induce fluorescence in implanted lung tumors in rats and are concentrated selectively in tumor tis-

I
sue. Thus, localization of quinacrine in Walker carcinosarcoma 256 and Novikoff hepatoma tumors implanted into rat lungs was noted by ultraviolet light visualization following the administration of a single 5 -mg subcutaneous dose. Additional studies were performed with samples of radioactive "iodoquinacrine" of unknown structure which were prepared by the iodination of quinacrine with ${ }^{125} I_{2}$ and ${ }^{131} I_{2}$, respectively. ${ }^{2}$ Once again the lung tumors fluoresced brightly and were clearly identifiable on radioautographs. Concentration of radioactivity in the lung tumor averaged five times higher than the concentration in the surrounding normal lung tissue, thus confirming earlier estimates of selective uptake based on fluorescence measurements. ${ }^{2}$

In order to define more precisely the chemical configuration that is associated with the induction of lung tumor fluorescence, a group of 86 acridine compounds was screened for this property.

Chemistry.-A majority of the aminoacridine compounds included in the present study (Tables I-IX)

[^0]were described previously in connection with the synthesis of potential antimalarial, ${ }^{3-14}$ antiamebic, ${ }^{10,11,13-19}$ anthelmintic, ${ }^{10,14,20}$ antibacterial, ${ }^{14,21}$ and antifungal ${ }^{10,14,22}$ agents. The other 9 -(mono- and -dialkylaminoalkylamino) acridines (V) listed in Table X were prepared by the condensation of a substituted 9 chloroacridine (IV) ${ }^{4.10}$ with the appropriate diamine, or by ring-closure of an N -(mono- or -dialkylamino-alkyl)-2-anilinobenzamide (III). The latter route was especially useful for the preparation of the 3,6 -disubstituted 9 -aminoacridines, since the N -(m-substituted phenyl)anthranilamides with bulky side chains ringclosed predominantly in the para position, whereas the

[^1]「.able I

No.	入. $\%$	Forrula	R of	Amivity ${ }^{\text {a }}$
1	$\because-\mathrm{Br}_{1}, 4-\mathrm{CH}_{1}$;	$++$
$\mathfrak{2}$	3-Cl. 6-CH:	$\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{ClN}_{3} \cdot 2 \mathrm{IICl} \cdot 0.5 \mathrm{H}_{2}()$	'rable X	$+++$
:		$\mathrm{C}_{3} \mathrm{H}_{30} \mathrm{CLN}_{4} \mathrm{O} \cdot 2 \mathrm{HCl}$	4,5	$+++$
4	$3-\mathrm{Cl}, \mathrm{6}-\mathrm{OCH}$	$\mathrm{C}_{33} \mathrm{H}_{30} \mathrm{CLN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot() .5 \mathrm{H}_{2}()$	Truble S	$+++$
i)	2-OCHa, 6-I ("ıduquinamine")	$\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{IN}: \mathrm{O} \cdot 2 \mathrm{HCl} \cdot() .5 \mathrm{H}_{2} \mathrm{O}$	12	$+++$
6	$\left.2,3-\left(\mathrm{CH}_{3}\right)_{2}, \quad-\mathrm{T}\right) \mathrm{CH} \mathrm{H}_{3}$	$\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{Na}_{3} \mathrm{O}$:;	$+++$
-	$3-\mathrm{Cl}, 6-\mathrm{OC}_{6} \mathrm{II}_{4}-\mathrm{p-Cl}$	$\mathrm{C}_{-8} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}$	Table	\cdots
s	$3-\mathrm{Cl}, 6-\mathrm{OC}_{6} \mathrm{II}_{5}$	$\mathrm{C}_{88} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2}()$	Trable X	-

"Obained throngh the conrtesy of Dr. John A. Leigh(y, The Lilly Research Laboraturies, Indianapulis, Ind, "Sample providel (hungh the contesy of Dr. K. U. Chinton, sterling-Winthrop liesearch Institnte, Remsselaer, N. Y. ${ }^{c}$ Activity rating is assigned an fullows: - , hi fluorescence at $\overline{5} \mathrm{mg}$; \pm, qucstionable fluorescence at $\overline{5} \mathrm{mg}$; + , 11 fluorescence at 5 mg , intense fluorencence at 20 mg ; ++ , intense fluorescence at $\overline{\mathrm{j}} \mathrm{mg} ;+++$, intense fluorescence at 1.5 mg .

Tableif II
 of Lujg Tumor F'luorescince in Rats

No.	YNR1R,	$X . Z$	$1 \cdot \mathrm{oramal})^{\text {a }}$	Ref	Activioy ${ }^{\text {h }}$
!)	($\left.\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	$2-\mathrm{OCH}_{4}$	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$	Table ${ }^{\text {S }}$	-
10	$\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{NHCH}\left(\mathrm{CH}_{3}\right)_{2}$:3,6-Cl.	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl}$	Table X	-
11	$\left(\mathrm{ClH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	$2-\mathrm{OCH}$	$\mathrm{C}_{19} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HHCl} \cdot 0 \cdot 25 \mathrm{H}_{2} \mathrm{O}$	Table X	-
12	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$: 3 ,6-C12	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl}$	Trable X	$++$
1:;	($\mathrm{H}_{2} \mathrm{CHOHCH} \mathrm{SH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2}$:3,6-Cl2	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	T'able X	+ + +
14	$\left.\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{H}$	3,6-Cl	$\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{Cl}-\mathrm{N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	Table X	-
1.)	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}_{2}$	$2-\mathrm{OCH}_{3} .6-\mathrm{Cl}$	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O} \cdot \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{4}{ }^{\text {a }}$	3	--
16	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$	$3-\mathrm{Cl}, 6-\mathrm{CF}_{3}$	$\mathrm{C}_{1} \mathrm{H}_{23} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	Table X	\cdots
17	$\mathrm{CH}_{2} \mathrm{CHOHCH} \mathrm{CH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$2-\mathrm{OCH}_{3}, 6-\mathrm{NO}_{2}$	$\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{II}_{2} \mathrm{O}$	Table ${ }^{\text {X }}$	$+++$
15	(${ }^{(1)}$	$2-0014,6-61$	$\left(\mathrm{CH}_{26} \mathrm{ClNa}_{1} \mathrm{O} \cdot 2 \mathrm{HCH}\right.$:;	+ +
19		2 -0) ${ }^{\text {a }}$		'rable X	\cdots
20		$3,6-\mathrm{Cl}_{2}$	$\mathrm{C}_{2+2} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	10	+t+
$\because 1$	$(\mathrm{CH})_{4} \mathrm{~N}_{\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}}$	$2-\mathrm{OCH}, 6-\mathrm{Cl}$	$\mathrm{C}_{2} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{H} \mathrm{O}{ }^{4}$	9	$++$
$\because 2$	$\left(\mathrm{CH}_{2}\right)_{\mathrm{N}} \mathrm{N}(\mathrm{COH})$:3,6-Cly	$\mathrm{C}=3 \mathrm{H}_{=2} \mathrm{Cl}_{2} \mathrm{Na} \cdot 2 \mathrm{HCl}$	T'able X	$++\cdots$
2:		:3,6-Cl.	$\mathrm{C}_{4} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2}$	'I'able X	--
24	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}$ [$\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]^{2}$	$2-\mathrm{OCH}_{3}, \mathrm{i}-\mathrm{Cl}$	$\mathrm{C}_{4} \mathrm{HI}_{3} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 2 \mathrm{H}_{2} \mathrm{O}^{c}$	\because	$t+$
\cdots	$\left(\mathrm{CH}_{2}\right)_{3}{ }^{\text {N }}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$	$\underline{2-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CIT}_{4}{ }^{\text {a }} \text {, }}$	$\mathrm{C}_{4} \mathrm{H}_{33} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{O} .5 \mathrm{H}$	f	$++i$
\because	$\left(\mathrm{CH}_{4}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{-} \mathrm{CH}_{3}$	3-Cl, 6-CF:	$\mathrm{C}_{2} \mathrm{H}_{31} \mathrm{ClF}_{3} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \cdot() \cdot 5 \mathrm{H}_{2} \mathrm{O}$	'rable X	--
27		$2-\mathrm{OCH} \mathrm{S}_{3}, \mathrm{c}$ - Cl	$\left({ }_{26} \mathrm{H}_{26} \mathrm{ClN}_{4} \mathrm{O}\right.$;	--
2 S	$(\mathrm{CH})_{4} \mathrm{~N}^{\left(C C_{2} \mathrm{H}_{5}\right)_{2}}$: $\mathrm{O} \mathrm{Cl}, \mathrm{6}-\mathrm{OC}_{6} \mathrm{H}$	$\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{4} \mathrm{O}$	Table ${ }^{-}$	-
29	$\left(\mathrm{CH}_{2}\right)_{4} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHC}_{3} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~N}^{\circ}$	3, 6 - Cl_{1}	$\mathrm{C}_{44} \mathrm{H}_{31} \mathrm{Cl}_{4} \mathrm{~N}_{3} \cdot 3 \mathrm{HCl}$	Table X	-

a Monocimate. ${ }^{b}$ Ohtained hrough the contesy of Mr. F. J. Muray, The Wm. S. Mcrrill Ca., Cincinnati, Ohit, ${ }^{\text {e }}$ Supplied thrugh the onntcsy of D. R. O. Clinton, Sterling-Winthrop Research Institute, Rensselaer, N. Y. a W. Huber, R. K. Bair, and S. C. Laskowski. J. Am. Chem. Soc., 67, 1619 (194.5). ESupplied throngh the cartesy of Dr. John A. Leighty, The Lilly Research Laboratories, Indianapolis, Ind. / Personal cmmmicatinn, Dr. Alfred Campbell, Parke, Davis and Co., Ann Arbor, Mich. $\boldsymbol{\theta}_{13} \mathrm{C}_{6} \mathrm{Cl}_{2} \mathrm{~N}$ represcons the $\mathrm{B}, 6$-dichlonacridin-9-yl radical. "See footnote c, Table I.
corresponding acid chlorides gave a mixture of the 1,6and 3,6-disubstituted 9 -chloroacridines which was difficult to separate (Scheme I).

Condensation of the potassium salt of the appropriate o-chlorobenzoic acid with the requisite aniline derivative gave the corresponding N-phenylanthranilic acids (II). ${ }^{4,10}$ Although earlier attempts ${ }^{23}$ to prepare 3.6-dichloro-9-aminoacridines via 4 -chloro- N -(m-chlorv-
phenyl)anthranilic acid were abandoned because of poor yields (5.8%) encountered in the Ullmann procedure, ${ }^{23}$ this route was used extensively in the current work following the discovery that 4 -chloro- N -(m chlorophenyl)anthranilic acid could be readily prepared in good yield ($42-53 \%$) utilizing a modification of the

[^2] /. Am. Chem. Soc., 68. $159(1946)$.

Table III
Effects of 9-Anilino-6-chloro-2-methoxyacridine Derivatives on the Induction of Letng Tumor Fluorescence in Rats

Table IV
Effects of Other 9-Aminoacridines on the Induction of Lung Tumor Fluorescence in Rats

No.	$N R_{1} \mathrm{R}_{2}$	x. z	Formula	Ref	Activity ${ }^{\prime \prime}$
40	NH_{ν}	H	$\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{2} \cdot \mathrm{HCl}^{\text {a }}$	4	-
41	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHN}\left(\mathrm{CH}_{5}\right)_{2}$	$2-\mathrm{OCH}_{3}, 6-\mathrm{Cl}$	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	13	-
42	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right) \mathrm{COCHCl}_{2}$	$2-\mathrm{OCH}_{3}, 6-\mathrm{Cl}$	$\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	15	-
43	$\mathrm{NHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}-0-\mathrm{Cl}$	$2-\mathrm{OCH}_{3}, 6-\mathrm{Cl}$	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O} \cdot \mathrm{HCl}$	c	-
44	NHNHSO ${ }_{2} \mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CH}_{3}$	$2-\mathrm{OCH}_{3}, 6-\mathrm{Cl}$	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{3} \mathrm{~S} \cdot \mathrm{HCl}$	14	-
$4 \overline{5}$	$\mathrm{NCOCH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$2-\mathrm{OCH}_{3}, 6-\mathrm{Cl}$	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O}_{2}$	14	-

${ }^{a}$ Obtained through the courtesy of Dr. R. O. Clinton, Sterling-Winthrop Research Institute, Rensselaer, N. Y. ${ }^{b}$ See footnote c, Table I. ${ }^{\text {© See Experimental Section. }}$

Scheme I

procedure employed by Hurd and Fancher ${ }^{24}$ for related compounds.

The N-phenylanthranilic acids (II) were converted to the N -phenylanthraniloyl chlorides by the action of PCl_{5}, or ring-closed with POCl_{3} to the 9 -chloroacridines (IV). The 9 -aminoacridines (V) were prepared by heating the appropriate 9 -chloroacridine ${ }^{4,10}$ and diamine in phenol (procedure I), or by allowing the acid chloride to react with the appropriate diamine followed by closure of the resulting amide III with POCl_{3} (procedure II). The intermediate diamines are either
commercially available or were described previously. ${ }^{10,18.19}$

Pharmacological Method.-Studies were performed on female Sprague-Dawley albino rats using Novikoff hepatoma and Walker carcinosarcoma 256 tumors. Lung tumors were produced by intravenous injection of saline suspensions of homogenated tumors. ${ }^{2}$

The acridine compounds (Tables I-IX) were screened using two to four animals per drug. In most instances the drugs were evaluated against both tumors. Two per cent aqueous or propylene glycol solutions were prepared. In routine tests, the experimental animals were given a single $5-\mathrm{mg}$ dose of drug subcutaneously and were sacrificed $24-48 \mathrm{hr}$ later. In some instances, aminoacridine compounds which proved to be inactive at the $5-\mathrm{mg}$ dose were tested at 20 mg . Compounds active at 5 mg were subsequently evaluated at a dose of 1.5 mg . Lungs containing tumor implants were removed and examined visually under ultraviolet light stimulation, using a Burton Model 1910 ultraviolet lamp which has a maximum emission at the long-wave band of $3660 \AA$. Control animals with lung tumors were not given aminoacridines but were examined in a similar manner. The color and intensity of any fluorescence present in the tumors were noted. Prior to in vivo studies, it was established that solutions of each of the aminoacridines emitted a bright yellow-green fluorescence under ultraviolet light stimulation.
＇l＇able：${ }^{\prime}$

No．	\therefore X，\％	1－4truta	11%	いいいい！
46	$\therefore, 6-\left(\mathrm{NH} \mathrm{m}_{\text {）}}^{2}\right.$（proflavine：		4	\cdots
45	$2-0 \mathrm{CH}_{4}, 6-\mathrm{Cl}, 9-\mathrm{SH}$	$\mathrm{C}_{44} \mathrm{H}_{10} \mathrm{ClNOs}^{6}$	4	－＂
45	$3,6-\left[{ }^{-}\left(\mathrm{CH}_{3}\right)_{2}\right]^{(}$（acridine orange）	$\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{Na}_{3} \cdot 2 \mathrm{llCl}$	4	\cdots
4）	（）$\left(\mathrm{CH}_{2}\right)_{\mathrm{a}}{ }^{-}\left(\mathrm{CH}_{1}\right)_{2}$		1fi	\cdots
50	5）$-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{-}+\left(\mathrm{CH}_{3}\right)_{4}$		16	－－
i）			16	－

＇I＇M11，1；VI

\cdots N．	SNRRE：	X，$/$	Formula	Muntic
52	$\left(\mathrm{CH}_{2}\right)_{-}{ }^{2}\left(\mathrm{CH}_{4}\right)$ ：	2－0CH3， 6 （－C．		＋＋－
3）	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{-}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)^{\prime}$	：3－Cl		＋＋
i4		3－6	（－1terna	－
i．）	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}^{\left(\mathrm{CH}_{2} \mathrm{CH}=-\mathrm{CH}\right.} \mathrm{CH}_{2}$			＋＋
S	$\left(\mathrm{CH}_{2}\right)_{\mathrm{O}} \mathrm{N}\left(\mathrm{CH}_{\underline{2}}\right)_{4}$	$3-\mathrm{Cl}$		－
is	$\mathrm{CH}\left(\mathrm{CHF}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{Ni}^{\left.\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \text { ）（quinacrine } 10 \text {－uxide }\right) ~}$	${ }^{2}-\mathrm{OCH}_{4} .6-\mathrm{Cl}$	$\mathrm{Can}_{4} \mathrm{H}_{39} \mathrm{CN}_{4} \mathrm{O} \cdot 2 \cdot 2 \mathrm{HCl}$	＋t＋
is	$\mathrm{CH}\left(\mathrm{CH}_{4}\right)^{\prime}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}}$	$2-0 \mathrm{CH}_{1}, \mathrm{~b}-\mathrm{Cl}$	$\mathrm{C}_{21} \mathrm{H}_{40} \mathrm{CLNa}_{4} \cdot 2 \mathrm{HCl} \cdot() .5 \mathrm{H}_{2} \mathrm{O}$	$+$
3）	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHCH}^{2} \mathrm{CH}_{2} \mathrm{~N}_{\left.\left(\mathrm{CH}_{4}\right)_{2}\right]_{2}}$	2－OCHL，6－Cl		－
（6）	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	2－0CHI，（6－Cl		－－
(6)	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{ClH}_{3}\right)\left(\mathrm{CHI}_{2}\right)_{8} \mathrm{CHH}_{4}$	：－－Cl		－－
62	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH} \mathrm{COH}_{2}\right.$	：3－Cl		\cdots

＂Sec fouthote c ，Table I．

Results．－Twenty－five aminoacridines anong the 86 （ompounds tested produced intense yellow－green fluo－ rescence in lung tumors following a single $1.5-20-\mathrm{mg}$ subcutaneous dose（Tables I－IX）．No fluorescence was induced in lung tumors by the other 61 acridine compounds．The bright yellow－green fluorescence； was not present in any of the control animals that did not receive a drug．Similar results were obtained in all studies with Walker and Novikoff tumor systems． An analysis of structure－activity relationships has en－ abled a preliminary determination of the chemical configuration associated with lung tumor fluorescence in rats．
（1）A NHY $\mathrm{NR}_{1} \mathrm{R}_{2}$ function is essential for activity （Tables I，II，VI，VIII，IX）where Y represents $\mathrm{CH}_{2}-$ $\left(\mathrm{HOHCH}_{2},\left(\mathrm{CH}_{2}\right)_{2--\overline{3}}, \mathrm{CHCH}_{3}\left(\mathrm{CH}_{2}\right)_{3}\right.$ ，or $\mathrm{CH}\left[\left(\mathrm{CH}_{2}\right)_{2}\right]_{2}-$ CH and $N R_{1} \mathrm{R}_{2}$ is a lower tertiary amine group including

$$
\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}, \quad \mathrm{~N}\left(\mathrm{C}_{0} \mathrm{H}_{5}\right)_{0}, \quad \mathrm{~N}\left[\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]_{2}, \quad \sim \mathrm{ON}+\left(\mathrm{C}_{2} \mathrm{H}_{\mathrm{j}}\right)_{2},
$$ $N\left(\mathrm{CH}_{2}\right)_{5}, \quad \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)_{2}, \quad \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$ ，or $\mathrm{N}-$ $\left(\mathrm{CH}_{2} \mathrm{CH}, \mathrm{Cl}\right)_{2}$ ．The presence of a third nitrogen atom ：nywhere in the side chain abolishes activity．

（2）The NHYNR R_{2} function can be attached to ： O－acridinyl， 9 －acridinyl 10－oxide，benz［b］acridin－12－yl． benz［c］acridin－7－yl．or benzo $[6][1, S]$ phenanthrolin－ $\bar{\gamma}-y]$ mucleus（Tables I，II．VI，VIII．IX）．
（3）＇The acridine nuclens can be substituted at posi－ tions 2－7 with one or more groups including $\mathrm{CH}_{:}$， $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}, \mathrm{Cl}, \mathrm{Br}$ ．I． OCH_{3} ，and NO_{2}（Tables I．Il， VI．VIII，IX）．Derivatives with bulky substituents such as $\mathrm{OC}_{6} \mathrm{H}_{5}$ or $\mathrm{OC}_{6} \mathrm{H}_{4}-p$－ Cl were inactive．
（4）All other acridine compounds studied gave negative results，including 9－anilinoacridincs（Tables III，VII．VIII．［X）．other 9 －aminoacridines of diverse structure（Tables IV，VII），and miscellaneous acridine derivatives such as proflavine and acridine orange （Table V）．

Wany of the 9 －（dialleylaminoalkytamino）atridines． 4 －（9－acridinylamino）－α－aminu－o－cresols，and their N － oxides are potelit antimalarials．${ }^{3,4,10,11,14}$ and both basic types stain and retard the growth of tumors in mice．${ }^{25}$ Therefore，it was surprising to find in the pres－ ent study that only the 9 －（dialkylaminoalkylamino）－ acridines induced lung tumor fluorescence in rats，while the 4 －（9－acridintamino）－α－amino－o－cresols were in－ active．

Discussion．It haw beel conclusively demonstrated that various aminoacridincs interact with the nucleic acids．Peacocke and Skerretter proposed that profla－

[^3]Table VII
Effects of Other 2-Methoxy-9-mminoacridine 10-Onides on the Induction of Lung Tumor Flforescence in Rats

No.	12	x. z	l'orthula	1 Ref	Accivity ${ }^{\text {a }}$
63	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{II}_{4}-\mathrm{O}-\mathrm{Cl}$	${ }_{6} \mathrm{-Cl}$	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	10	-
64	$\left(\mathrm{CH}_{2}\right) ; \mathrm{CH}_{3}$	$6-\mathrm{Cl}$	$\mathrm{C}_{22} \mathrm{H}_{2} 2 \mathrm{ClN}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	10	-
6.5		6-Cl	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{3} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}$	11	-
66		3-OCH3, 6- NO_{2}	$\mathrm{C}_{26} \mathrm{H}_{28} \cdot \sim_{4} \mathrm{O}_{6} \cdot 2 \mathrm{HICl} \cdot 0.75 \mathrm{H}_{2} \mathrm{O}$	21	-

a see fortuote c', Table I.
Table ViII
Effects of -Amíobenz[c]acridind Derivatives os the Indccton of Lung Tumor Fluorlscence in Rato

No.	12	Forinula	Ref	Activity ${ }^{\text {c }}$
67	H	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4}$	4	-
68		$\mathrm{C}_{23} \mathrm{HI}_{44} \mathrm{Cl}_{22} \mathrm{~N}_{2} \cdot \mathrm{HCl}$	11	-
69	$\left(\mathrm{CH}_{2}\right): \mathrm{CH}_{3}$	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2}$	18	-
70	$\left(\mathrm{CH}_{2}\right)_{3-} \mathrm{N}\left(\mathrm{CH}{ }_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl}$	14	+
71	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}$	$\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	6	+ +
73	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{-} \mathrm{HN}\left(\mathrm{CH}_{2}\right)_{3}$	$\mathrm{C}_{225} \mathrm{H}_{28} \mathrm{~N}_{4} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	13	-
73	$\left(\mathrm{CH}_{2}\right)_{3-} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{4}$	$\mathrm{C}_{2 ;} \cdot \mathrm{H}_{30} \mathrm{~N}_{4} \cdot 3 \mathrm{HCl} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}$	14	-
74	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{~N}\left(\mathrm{CH}_{2}\right)_{3}$	$\mathrm{C}_{2}-\mathrm{H}_{31} \mathrm{~N}_{3}$	18	+ +
75	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{7} \mathrm{CH}_{3}$	$\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{1} \cdot 2 \cdot 2 \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}{ }^{2}$	19	-
76	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left[\left(\mathrm{CH}_{2}\right)_{2}\right]_{2} \mathrm{NC}_{6} \mathrm{H}_{2}$	$\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{4} \cdot 3 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	14	-
77	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHC}_{1} ; \mathrm{H}_{10} \mathrm{~N}^{b}$	$\mathrm{C}_{38} \mathrm{H}_{32} \mathrm{~S}_{4}^{-} \cdot 2 \mathrm{HCl} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$	14	-
78	$\left(\mathrm{CH}_{0}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{NHC}_{6}-\mathrm{H}_{40} \mathrm{~N}^{6}$	$\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{~N}_{5} \cdot 3 \mathrm{HCl} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	14	-
79	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NHC}_{1} ; \mathrm{FH}_{16} \mathrm{~N}^{\text {b }}$	$\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$	14	-
80	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right]\left(\mathrm{CH}_{2}\right)_{3} \stackrel{ }{ } \mathrm{HCC}_{1 ;} \mathrm{H}_{10} \mathrm{~N}^{\text {b }}$	$\mathrm{C}_{48} \mathrm{H}_{48} \mathrm{~N}_{6} \cdot 4 \mathrm{HCl} \cdot 4.2 \mathrm{H}_{2} \mathrm{O}$	14	-
Sali	${ }^{b} \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~N}$ represents the benz[c]acridiu- $-\mathrm{-yl}$ r	\& See footnote c, Table I. ${ }^{\text {a }}$ See Experimental Section.		

vine (46) is bound to DNA by two mechanisms, namely a strong first-order reaction that reaches equilibrium at one proflavine molecule per four or five nucleotides. and a weaker higher order process that results in the fixation of one proflavine molecule per nucleotide. Lerman ${ }^{27}$ showed that the strong binding site involves the intercalation of one acridine molecule between two layers of base pairs, with the weaker binding site on the exterior of the DNA model. This picture of intercalation is based on measurements of viscosity and sedimentation of the DNA-acridine complex in dilute aqueous solution, X-ray diffraction patterns, ${ }^{27,28}$ polarization of fluorescent light, flow dichroism, ${ }^{29}$ small-angle X-ray scattering, ${ }^{30}$ kinetic diazotization studies, ${ }^{31}$ and free-energy calculations based on thermal denaturation. ${ }^{32}$ Intercalation of proflavine into RNA has also been observed. ${ }^{4}$

[^4]9-Aminoacridine (40) seems to intercalate as strongly as proflavine, whereas acridine orange (48) is much more weakly held than proflavine, presumably because of its lack of bondable hydrogen atoms. ${ }^{4}$ Studies with a quinacrine-DNA complex are also compatible with the proflavine intercalation hypothesis. ${ }^{29.33}$ However. the quinacrine-DNA complex is so tight as to prevent depolymerization of the DNAA by deoxyribonuclease. Some of the aminoacridines have also been found to be mutagenic agents for bacteria, viruses, and yeast. ${ }^{4,34}$

Although simple aminoacridines (i.e., proflavine. acridine orange, 9 -aminoacridine) and quinacrine are all highly fluorescent and are known to interact with nucleic acids, only the basically substituted compounds induced lung tumor fluorescence in the present study. The reasons for the inability of simple acridines to induce lung tumor fluorescence are presently unknown, but presumably factors such as drug transport, binding strength, or quenching of fluorescence in tumor tissue are involved. Studies with labeled proflavine or acri-

[^5]T'MHAE IS

Ni.

121

14
$\mathrm{C}_{21} \mathrm{H}_{2} \mathrm{ClN}_{6} \mathrm{O} \cdot ; \mathrm{Bl}\left(\mathrm{Cl} \cdot 3 \mathrm{H} \mathrm{H}_{2} \mathrm{O}\right.$
14
$\left(2 H_{2} \cdot\left(N_{1} O_{4} \cdot 2 H\left(C 1 \cdot H_{2}\right)\right.\right.$
83

.4

14
$t+$
$8 ;$

sis

14
"see finothote c, Trable I.

Thine X

Ni.	ẎRR1Ra	X. $\%$	- 11 , ${ }^{*}$	Yie, 1 pmi- fiel.	$\mathrm{l}^{1} \mathrm{ren-}$	l'urlicu soven1"	Formatan
$!$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$	$2-() \mathrm{CH}_{3}$	1.39-160	$\overline{7}$	1	A	$\mathrm{C}_{1 \times 1} \mathrm{H}_{21} \mathrm{Na}_{3}()_{12}$
10	$\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{NFHCH}\left(\mathrm{CH}_{4}\right)_{2}$:3,6-Cly	280 der	44	11	13	$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HIC}$
11	$\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{NIL}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ol}$	$2-\mathrm{OCH}$	$215-217$ dec	10	1	B	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl} \cdot 0.25 \mathrm{H}_{2} \mathrm{O}^{\prime \prime}$
12	$\left(\mathrm{CH}_{n}\right)_{3} \mathrm{~N}^{+}\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)_{2}$	$3.6-\mathrm{Cl}$	2.35 der	7	11	B	$\mathrm{C}_{20} \mathrm{H}_{2:} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl}$
14		3, 3 -6-Cl,	23)-240 dct	44	1	B	$\mathrm{C}_{2} 2 \mathrm{H}_{2} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot\left(0.5 \mathrm{H}_{2} \mathrm{O}\right)$
Si	$\left(\mathrm{CH}_{2}\right)_{1} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH} \mathrm{O}_{2} \mathrm{OH}\right)_{2}$:3,6-Cly	$227-28$ dec	; ${ }^{\text {(}}$	1	C	$\mathrm{C}_{20} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot 2 \mathrm{HCl}$
$1: 3$	CH2CHOHCH2N($\left.\mathrm{Cl}_{2} \mathrm{H}_{3}\right)_{2}$	3, 6 - ${ }^{\text {Cll }}$	$297-129$, lec	(i)	11	($\mathrm{C}_{0} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot \mathrm{H} \mathrm{l}_{2}()$
16	$\left(\mathrm{CH}_{2}\right)^{\mathrm{N}}$ ($\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right)_{2}$:-Cl, 6-CF:	149 der	\%	I	1)	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{ClF}_{3} \wedge_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HFCl} \cdot 1 . .11_{2}()$
SK	$\left(\mathrm{CH}_{2}\right)^{-1}\left(\mathrm{CH}_{2} \mathrm{CHz}() \mathrm{H}\right)_{2}$?-C1, 6-ClI	237-239 der	S)	I	($\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ClN}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$
$\underline{-2}$	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{~N}\left(\mathrm{CH} \mathrm{H}_{2}\right)$	$3,6-\mathrm{CH}$	$278-279$ dec	79	II	B	$\mathrm{C}_{2} 1 \mathrm{H}_{2} 2 \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCCl}$
$\stackrel{ }{-}$	$\mathrm{CH}\left(\mathrm{CH}_{4}\right)\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)$	$3-\mathrm{Cl}, 6-\mathrm{CH}$	240-241 dee	38	1 I	C	$\mathrm{C}_{9} \mathrm{H}_{40} \mathrm{ClN}_{3} \cdot 2 \mathrm{HCl} \cdot\left(0.5 \mathrm{H}_{2} \mathrm{O}\right.$
4	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{IH}_{5}\right)_{2}$:-Cl, 6-0CHa	21.$)$ dee	i4	11	E	$\mathrm{C}_{2} \mathrm{H}_{40} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}$
$2 \cdot$	$\left(\mathrm{CH}_{8}\right)_{3} \mathrm{NH}^{\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{8} \mathrm{C}}$	$3,6-\mathrm{Cl}_{2}$	28:) dec	$\because 4$	11	($\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{Cl}_{2} \mathrm{~N}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}$
\cdots	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{NH}\left(\mathrm{CH}_{2}\right) \mathrm{CHH}_{4}$:3-Cl. 6-CF\%	262-264	29	1	C	$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{ClF}_{4} \mathrm{~N}_{4} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
2 S	$\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}^{-}\left(\mathrm{C}_{2} \mathrm{I} \mathrm{I}_{5}\right)_{2}$	$\because-\mathrm{Cl}, 6-\mathrm{OC}_{6} \mathrm{HI}_{3}$	22!)-23) dee	\therefore :	11	F	$\mathrm{C}_{46} \mathrm{H}_{28} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H} \mathrm{H}_{2} \mathrm{O}$
7	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)_{2}$:3-Cl. 6-OC66 $\mathrm{H}_{4}-p-\mathrm{Cl}$	212-214 dee	50	11	13	$\mathrm{C}_{3} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O} \cdot 2 \mathrm{HCl}^{4}$
813	$\mathrm{CH}\left(\mathrm{CH}_{4}\right)\left(\mathrm{CH}_{2}\right)_{\mathrm{a}} \mathrm{N}\left(\mathrm{C}_{2} \mathrm{~F}_{2}\right)_{2}$	$3-\mathrm{Cl}, 7-\mathrm{C}_{6} \mathrm{H}_{6}$	75-80 dee	87	1	C	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{ClN}_{3} \cdot 2 \mathrm{HCl} \cdot 1.0 \mathrm{H}_{2} \mathrm{O}$
8	$\mathrm{CH}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{~N}\left(\mathrm{C}_{2} \mathrm{H}_{3}\right)_{2}$	$3-\mathrm{Cl}, 6-\mathrm{OC}_{6} \mathrm{H}_{5}$	$246-247$ des	85	11	B	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{ClN}_{3} \mathrm{O} \cdot 2 \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$
(1)	$\left(\mathrm{CH}_{2}\right)_{\mathrm{N}} \mathrm{NH}(\mathrm{CIL})_{0} \mathrm{CH}_{4}$:-C1. 7 - $\mathrm{C}_{6} \mathrm{H}_{5}$	2.33 deo	(if)	1	B	$\mathrm{C}_{411} \mathrm{H}_{36} \mathrm{ClN}_{3} \cdot 2 \mathrm{HCl} \cdot \mathrm{H}_{2} \mathrm{O}^{q}$
- 2 !		:3, 3 - (1)	- $9+414$	41	1	13	$\mathrm{CaH}_{4} \mathrm{HCH}_{4} \mathrm{~N}_{3} \cdot \mathrm{BHCM}$

dine orange are planned to determine actual localization in the tumors.

There also appears to be a quenching of fluorescence of all aminoacridines by experimental tumors implanted in extrapulmonary sites. Recent studies ${ }^{35}$ demonstrated an increased concentration of radioactivity in intrahepatic and in intragastric tumors following administration of radioiodinated quinacrine, in spite of the absence of observable fluorescent material in these tumors.

The aminoacridines, and particularly the basically substituted aminoacridines, may ultimately prove to be useful in the clinical diagnosis of cancer. Many of these compounds are relatively nontoxic ${ }^{3,4,10.19}$ and several have been used in clinical medicine. ${ }^{3,4}$ The application of fluorescent bronchoscopy or fluorescent exfoliative cytology are possibilities in lung cancer study. The use of radioisotope-tagged compounds in scintillation scanning of such organs as the lung and liver appears even more promising.

Experimental Section ${ }^{36}$

4-Chioro-N-(m-chlorophenyI)anthranilic Acid.-A mixture of 191 g (1 mole) of 2,4 -dichlorobenzoic acid, 157 g (1.25 moles) of m-chloroaniline, 138 g (1 mole) of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}, 5 \mathrm{~g}$ of Cu powder, and 750 ml of dry 1-pentanol was heated at refux with stirring for 5 hr . The mixture was cooled, 70 g of KOH and 500 ml of $\mathrm{H}_{2} \mathrm{O}$ were added, and the mixture was steam distilled to remove volatile materials. The aqueous residue was filtered hot and the filtrate was made slightly acid with concentrated HCl . The crude acid was collected by filtration and was washed successively with warm water, hot 95% EtOH, and petroleum ether (bp $30-60^{\circ}$). The dried product was crystallized from chlorobenzene to give $144.5 \mathrm{~g}(51 \%)$ of nearly colorless crystals, mp
 runs, the yields of purified acid ranged from 42 to 53%.

4-Chioro-N-(m-methoxyphenyI)anthranilic Acid.-Ctilizing the general procedure described above for the preparation of 4-chloro-N-(m-chlorophenyl) anthranilic acid, 30.5 g (0.16 mole) of 2,4 -dichlorobenzoic acid, 30.0 g (0.19 mole) of m-anisidine hydrochloride, and 55.0 g (0.44 mole) of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave $7.5 \mathrm{~g}(14 \%)$ of product, pale yellow crystals from benzene, $\mathrm{mpp} 163-165^{\circ}$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClNO}_{3}\right) \mathrm{C}, \mathrm{H}$.

4-Chioro- \mathbf{N} - $(\alpha, \alpha, \alpha$-trifluoro- m-tolyl)anthranilic Acid.-Utilizing the general procedure described above for the preparation of 4-chloro-N-(m-chlorophenyl) anthranilic acid, 573 g (3 moles) of 2,4 -dichlorobenzoic acid, 483 g (3 moles) of m-aminobenzotrifluoride, and 207 g (1.5 moles) of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded $436 \mathrm{~g}(47 \%)$ of product, pale yellow crystals from CHCl_{3}, mp 208-210 . Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{3} \mathrm{ClF}_{3} \mathrm{NO}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Chioro-N-(m-phenoxyphenyl)anthranilic Acid.-Utilizing the general procedure described above for the preparation of 4-chloro-N-(m-chlorophenyl) anthranilic acid, 80.0 g (0.42 mole) of 2,4 -dichlorobenzoic acid, 77.3 g (0.42 mole) of 3 -aminodipheny 1 ether, and 58.0 g (0.42 mole) of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ gave 49.4 g (35%) of product, pale green leaflets from chlorobenzene or aqueous ethanol (decolorizing charcoal), mp 168-169 . Anal. $\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClNO}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-Chloro-N- $[m$-(p-chlorophenoxy) phenyI]anthranilic Acid.Utilizing the general procedure described above for the preparation of 4-chloro-N-(m-chlorophenyl)anthranilic acid, 84.0 g (0.44 mole) of 2,4 -dichlorobenzoic acid, 96.3 g (0.44 mole) of 4^{\prime} -chloro- 3 -aminodiphenyl ether, and 61.0 g (0.44 mole) of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded $40.7 \mathrm{~g}(25 \%$) of product, pale yellow crystals from benzene, mp 162-163 . Anal. ($\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{NO}_{3}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.
$\mathbf{3 , 6}, \mathbf{9}$ - Trichioroacridine.-A mixture of 1 kg (3.55 moles) of 4-chloro- N -(m-chlorophenyl) anthranilic acid and 3.51 . of POCl_{3} in a 12-1. flask fitted with four large reflux condensers was cautiously

(35) N. B. Ackerman, unpublighed results.

(36) Melting points (corrected) were taken in open capillary tubes in a Thomas-Hoover capillary melting point apparatus. Where analyses are indicared only by symbols of the elements. analytical results obtained for those elements were within $\pm 0.4 \%$ of the theoretical values.
warmed on a stean bath until the vigorous, exothermic reaction began. After the reaction had sllbsided, the mixture was stirred and heated on a steam bath for 3 hr and 3 l . of POCl_{3} was removed in vacuo. The residue was ponred slowly with vigorous stirring into a large excess of $\mathrm{NH}_{4} \mathrm{OH}$ and ice. The crinde trichloroacridine was collected by filtration, washed ($\mathrm{H}_{2} \mathrm{O}$), and dried in vacuo at 38°; weight 973 g . The product was extracted with several portions of boiling CHCl_{3} and the combined extracts were concentrated, chilled, and filtered. The filter cake was washed thuroughly with petrolenm ether and dried. Two crystallizations from chlorobenzene gave $2.56 \mathrm{~g}(26 \%)$ of pure product, $\mathrm{mp} 223-224^{\circ}$ (lit. ${ }^{3} \mathrm{mp} 224-225^{\circ}$). In six smaller scale runs, the yields ranged from 22 to 31%.

3,9-Dichloro-6-(trifuoromethyl)acridine.-E'tilizing the procedure described above for the preparation of $3,6,9$-trichloroacridine, 50.0 g ($(1.16 \mathrm{~mole}$) of 4 -chloro- N - $(\alpha, \alpha, \alpha$-trifluoro- m tolyl)anthranilic acid, and 1.00 ml of POCl_{3} gave 33.5 g of mixed chloroacridine isomers. Fractinnal crystallization of the mixture from benzene gave $20.1 \mathrm{~g}(40 \%)$ of pale yellow crystals, mp $159-$ 160°. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

9-(Mono- and -Dialkylaminoalkylamino)acridines (Table X). Procedure I.-A mixture of 9.3 g (0,033 mole) of $3,6,9$-trichlor()acridine, 5.8 g (0.036 mole) of $2,2^{\prime}$-(3-aminopropylimino)diethanol, and 25 g of phenol was heat ed for 2 hr at 110° with stirring. The melt was allowed to conl to 75° and was diluted with a mixture of 20 ml of concentrated HCl and 160 ml of acetone. Several volumes of acetone were added, the mixture was chilled, and the supernatant was decanted. The residue was dissolved in $\mathrm{H}_{2} \mathrm{O}$, and the solution was treated with decolorizing charcoal and made alkaline with excess $\mathrm{NH}_{4} \mathrm{OH}$. After 1 hr , the waxy brown precipitate crystallized. Recrystallization from EtOH$\mathrm{Me}_{2} \mathrm{CO}-\mathrm{H}_{2} \mathrm{O}$ gave 5 g of yellow base, $\mathrm{mp} 158-160^{\circ}$. This was treated with excess ethanolic HCl to give $5.8 \mathrm{~g}(36 \%)$ of $2,2^{\prime}$ -[3-(3,6-dichloroacridin-9-ylamino) propylimino] diethanol dihydrochloride (87), yellow crystals, mp 22 $7-228^{\circ}$ dec.

Procedure II.-4-Chloro-N-(m-chlorophenyl)anthranilic acid ($16.9 \mathrm{~g}, 0.06 \mathrm{~mole}$) was snspended in 140 ml of dry petrolenm ether and treated portionwise with 13.8 g (0.066 mole) of PCl .. The mixture was boiled under reflux for 30 min , decolorizing charcoal was added, and the mixture was filtered hot. Upon cooling, the crude 4-chloro-N-(m-chlorophenyl)anthraniloyl chloride crystallized and was collected by filtration and dried. Recrystallization from petruleum ether (decolorizing charcoal) gave $15.0 \mathrm{~g}(84 \%)$ of the purified material as canary yellow needles, mp 109-110.

The acid chloride ($15.0 \mathrm{~g}, 0.051 \mathrm{~mole}$), N,N-diethyl-1,3propanediamine ($7.2 \mathrm{~g}, 0.056 \mathrm{~mole}$), and 170 ml of dry $\mathrm{C}_{6} \mathrm{H}_{8}$ were heated under reflux for 40 mill and cooled. $\mathrm{POCl}_{3}(19 \mathrm{ml})$ was added dropwise with stirring and the mixture was boiled under reflux for 7 hr . A bright yellow solid began to separate in the first hr. The mixture was cooled, a few drops of water was added, and the bellzene supernatant was decanted. The residue was taken up in 125 ml of boiling EtOH and diluted with 500 ml of ether. The mixture was chilled and the solid was collected by filtration and washed ($\mathrm{Me}_{2} \mathrm{CO}$). Crystallization from $\mathrm{MeOH}-\mathrm{Me} 2 \mathrm{CO}$ gave $19.5 \mathrm{~g}(52 \%)$ of 3,6 -dichloro- 9 -(3-diethylaniliopropylamino)acridine dihydrochloride as fine yellow needles, mp $253^{\circ} \mathrm{dec}$.

6-Chioro-9-(o-chlorobenzylamino)-2-methoxyacridine Monohydrochloride (43).-6,9-Dichloro-2-methuxyacridine (27.8 g , 0.1 mole) and o-chlorobenzylamine ($14.0 \mathrm{~g}, 0.1 \mathrm{~mole}$) were stirred and heated on a steam bath with 50 g of phenol for 3 hr , and the crude product was purified according to procedıre I above. The hydrochloride salt was purified from $\mathrm{CHCl}_{3}-\mathrm{Ie}_{2} \mathrm{CO}$ to give 16.5 g (39%) of yellow crystals, mp 300° dec. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}\right.$. $\mathrm{HCl}) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

7-(3,4-DichIoroanilino)benz $\lceil c\rceil$ acridine Monohydrochloride (68).-7-Chlorobenz[c]acridine ($15.8 \mathrm{~g}, 0.06 \mathrm{~mole}$) and 3,4dichloroaniline ($9.7 \mathrm{~g}, 0.06 \mathrm{~mole}$) were stirred and heated on a steam bath with 30 g of phenol for 3 hr , and the crude product was purified according to procedure I. The hydrochloride salt was purified from EtOH- $\mathrm{Me}_{2} \mathrm{CO}$ to give $18.0 \mathrm{~g}(71 \%)$ of orange crystals, mp 300° dec. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot \mathrm{HCl}\right) \mathrm{H}, \mathrm{N} ; \mathrm{C}$: calcd, 64.88 ; found, 64.43 .

Acknowledgments.-The authors are indebted to Mr. C. E. Childs and associates for the microanalyses and to Dr. J. M. Vandenbelt and co-workers for determination of the spectral data.

[^0]: (1) (a) This investigation was supported in part by the Jane Coffin Childs Memorial Fund for Medical Research. (b) Faculty Research Associate of the American Cancer Society.
 (2) N. B. Ackerman and A. Shemesh, J. Am. Med. Assoc., 187. 832 (1964).

[^1]: (3) F. Y. Wiselogle, "A Survey of Antimalarial Drugs, 1941-1945," Vol. 1I. J. T. Edwards, Ann Arbor, Mich., 1946.
 (4) A. Albert. "The Acridines." 2nd ed. Edward Arnold Ltd., London. 1966.
 (5) E. R. Shepard and H. A. Shonle, J. Am. Chem. Soc., 70. 1979 (1948).
 (6) G. B. Bachman and G. M. Picha. ibid., 68, 1599 (1946).
 (7) J. H. Burckhalter, E. M. Jones. W. F. Holcomb. and L. A. Sweet, ibid., 65, 2012 (1943).
 (8) J. H. Burckhalter, F. H. Tendick. E. M. Jones. P. A. Jones. W. F. Holcomb, and A. L. Rawlins, ibid., 70. 1363 (1948).
 (9) W. Huber, R. K. Bair, and S. C. Laskowski, ibid., 67, 1619 (1945).
 (10) E. F. Elslager, R. E. Bowman, F. H. Tendick, D. J. Tivey, and D. F. Worth. J. Med. Pharm. Chem., 5. 1159 (1962).
 (11) E. F. Elslager and F. H. Tendick. ibid.. 5. 1153 (1962).
 (12) H. Medenwald. Med. Chem. Abhandl. Med-Chem. Forschungsstaetten Farbenfabriken Bayer, 5. 206 (1956).
 (13) E. F. Elslager. E. A. Weinstein. and D. F. Worth, presented in part at the 147th National Meeting of the American Chemical Society. Philadelphia. Pa.. April 1964.
 (14) E. F. Elslager. F. W. Sliort, F. H. Tendick, and D. F. Worth, unpublished data.
 (10̄) E. F. Elslager, E. L. Benton, F. W. Short. and F. H. Tendick, J. Am. Chem. Soc., 78, 3453 (1956).
 (16) N. Fisher, C. S. Franklin, E. N. Morgan, and D. J. T'ivey. J. Chem. Soc., 1411 (1958).
 (17) E. F. Elslager and F. H. Tendick, J. Med. Pharm. Chem., B. 546 (1962).
 (18) E. F. Elslager, A. M. Moore, F. W. Short, M. J. Sullivan, and F. H. Tendick. J. Am. Chem. Soc. 79. 4699 (1957).
 (19) F. W. Short, E. F. Elslager, A. M. Moore, M. J. Sullivan, and F. H. Tendick. ibid.. 80, 223 (1958).
 (20) F. H. Tendick. P. F. Thompson, and E. F. Flslager, U. S. Patent 3.012 .036 (1901).
 (21) E. F. Elslager and F. H. Tendick, J. Med. Pharm. Chem., 5. 1149 (1962).
 (22) F. H. Tendick. P. E. Thompson, and E. F. Elslager, U. S. Patent 3.017.413 (1962).

[^2]: (23) D. 1'. Spalditg, G. W. Muersch, H. S. Mostier, and l'. ('. Whiturore

[^3]:
 1！（1）

[^4]: (2ך) L. S. Lerman, J. Mol. Biol., 3. 18 (1961).
 (28) D. 31. Neville, Jr., and D. R. Davies, ibid., 17. 57 (1966).
 (29) L. S. I,erman, Iror. Natt. Acad. Sci. C. S., 49. 94 (1963).
 (30) V. Luzzati, F, Masson, and L. S. Lerman. J. Mol. Biol., 3. 634 (1961).
 (31) L. S. Lerman, ibid., 10. 367 (1964).
 (32) N. F. Gerseh and 1. O. Jordan, ilid.. 13. 138 (1965).

[^5]: (3:3) N. I3. Kurnick and I. E. Radeliffe, J. Lab. Cliя, Med., 60. 666 (1962).
 (34) R. 1. De Mars, Valure, 172, 964 (1953).

